

Glavno

| Range of product | Altivar 71 |
| :---: | :---: |
| Product or component type | Variable speed drive |
| Product specific application | Complex, high-power machines |
| Component name | ATV71 |
| Motor power kW | 220 kWat 380... 480 V 3 phases 250 kWat 380... 480 V 3 phases |
| Motor power hp | 350 hpat $380 \ldots 480 \mathrm{~V} 3$ phases 400 hpat 380... 480 V 3 phases |
| Motor cable length |  |
| [Us] rated supply voltage | 380... 480 V (-15... 10 \%) |
| Network number of phases | 3 phases |
| Line current | 320 Afor 480 V 3 phases $220 \mathrm{~kW} / 350 \mathrm{hp}$ 357 Afor 480 V 3 phases 250 kW / 400 hp 396 Afor 380 V 3 phases 220 kW / 350 hp 444 Afor 380 V 3 phases 250 kW / 400 hp |
| EMC filter | Integrated |
| Assembly style | With heat sink |
| Variant | Reinforced version |
| Apparent power | 260.6 kVAat 380 V 3 phases 220 kW / 350 hp 292.2 kVAat 380 V 3 phases $250 \mathrm{~kW} / 400 \mathrm{hp}$ |
| Prospective line Isc | $50 \mathrm{kA}, 3$ phases |
| Nominal output current | 427 A at 2.5 kHz 380 V 3 phases $220 \mathrm{~kW} / 350 \mathrm{hp}$ 427 A at 2.5 kHz 460 V 3 phases $220 \mathrm{~kW} / 350 \mathrm{hp}$ 481 A at 2.5 kHz 380 V 3 phases $250 \mathrm{~kW} / 400 \mathrm{hp}$ 481 A at 2.5 kHz 460 V 3 phases $250 \mathrm{~kW} / 400 \mathrm{hp}$ |
| Maximum transient current | 640 Afor 60 s 3 phases 220 kW / 350 hp 704 Afor 2 s 3 phases 220 kW / 350 hp 721 Afor 60 s 3 phases 250 kW / 400 hp 793 Afor 2 s 3 phases 250 kW / 400 hp |
| Output frequency | $0.1 \ldots 500 \mathrm{~Hz}$ |
| Nominal switching frequency | 2.5 kHz |
| Switching frequency | $2.5 \ldots 8 \mathrm{kHz}$ adjustable $2.5 \ldots 8 \mathrm{kHz}$ with derating factor |
| Asynchronous motor control profile | ENA (Energy adaptation) system for unbalanced loads <br> Flux vector control (FVC) with sensor (current vector) <br> Sensorless flux vector control (SFVC) (voltage or current vector) <br> Voltage/frequency ratio (2 or 5 points) |
| Type of polarization | No impedancefor Modbus |

## Komplementarno

| Product destination | Asynchronous motors <br> Synchronous motors |
| :--- | :--- |
| Supply voltage limits | $323 \ldots 528 \mathrm{~V}$ |
| Supply frequency | $50 \ldots 60 \mathrm{~Hz}(-5 \ldots 5 \%)$ |
| Network frequency | $47.5 \ldots 63 \mathrm{~Hz}$ |
| Speed range | $1 \ldots 100$ for asynchronous motor in open-loop mode, without speed feedback |
|  | $1 \ldots 50$ for synchronous motor in open-loop mode, without speed feedback |
| $1 \ldots . .1000$ for asynchronous motor in closed-loop mode with encoder feedback |  |


| Speed accuracy | +/- $0.01 \%$ of nominal speedfor 0.2 Tn to Tn torque variation in closed-loop mode with encoder feedback <br> +/- $10 \%$ of nominal slipfor 0.2 Tn to Tn torque variation without speed feedback |
| :---: | :---: |
| Torque accuracy | +/- 15 \% in open-loop mode, without speed feedback <br> +/- 5 \% in closed-loop mode with encoder feedback |
| Transient overtorque | $\begin{aligned} & 220 \% \text { of nominal motor torque }+/-10 \% \text { for } 2 \mathrm{~s} \\ & 170 \% \text { of nominal motor torque }+/-10 \% \text { for } 60 \text { s every } 10 \text { minutes } \end{aligned}$ |
| Braking torque | <= $150 \%$ with braking or hoist resistor $30 \%$ without braking resistor |
| Synchronous motor control profile | Vector control without speed feedback |
| Regulation loop | Adjustable PI regulator |
| Motor slip compensation | Adjustable <br> Automatic whatever the load <br> Not available in voltage/frequency ratio (2 or 5 points) <br> Suppressable |
| Local signalling | 1 LED red presence of drive voltage |
| Output voltage | <= power supply voltage |
| Insulation | Electrical between power and control |
| Type of cable | With a NEMA Type1 kit: 3-strand UL 508 cableat $40^{\circ} \mathrm{C}$, copper $75^{\circ} \mathrm{C}$ PVC With an IP21 or an IP31 kit: 3-strand IEC cable at $40^{\circ} \mathrm{C}$, copper $70^{\circ} \mathrm{C}$ PVC Without mounting kit: 1 -strand IEC cable at $45^{\circ} \mathrm{C}$, copper $70^{\circ} \mathrm{C}$ PVC Without mounting kit: 1 -strand IEC cable at $45^{\circ} \mathrm{C}$, copper $90^{\circ} \mathrm{C}$ XLPE/EPR |
| Electrical connection | Al1-/AI1+, Al2, AO1, R1A, R1B, R1C, R2A, R2B, LI1...LI6, PWR terminal $2.5 \mathrm{~mm}^{2} /$ AWG 14 <br> L1/R, L2/S, L3/T, U/T1, V/T2, W/T3 terminal $4 \times 185 \mathrm{~mm}^{2}$ <br> PC/-, PA/+ terminal $4 \times 185 \mathrm{~mm}^{2}$ |
| Tightening torque | $\begin{aligned} & \text { L1/R, L2/S, L3/T, U/T1, V/T2, W/T3 } 41 \text { N.m / } 360 \text { lb.in } \\ & \text { PC/-, PA/+ } 41 \text { N.m / } 360 \text { lb.in } \\ & \text { Al1-/Al1+, Al2, AO1, R1A, R1B, R1C, R2A, R2B, LI1...LI6, PWR } 0.6 \text { N.m } \end{aligned}$ |
| Supply | Internal supply for reference potentiometer ( 1 to 10 kOhm ), $10.5 \mathrm{~V} \mathrm{DC}+/-5 \%,<=10$ mAfor overload and short-circuit protection <br> Internal supply, 24 V DC, voltage limits $21 . . .27 \mathrm{~V}$, <= 200 mAfor overload and shortcircuit protection |
| Analogue input number | 2 |
| Analogue input type | Al1-/Al1+ bipolar differential voltage +/- 10 V DC, input voltage 24 V max, resolution 11 bits + sign <br> AI2 software-configurable current $0 \ldots 20 \mathrm{~mA}$, impedance 242 Ohm, resolution 11 bits AI2 software-configurable voltage $0 \ldots 10 \mathrm{~V}$ DC, input voltage 24 V max, impedance 30000 Ohm, resolution 11 bits |
| Sampling duration | Al1-/Al1 $+2 \mathrm{~ms},+/-0.5 \mathrm{msfor}$ analog input(s) <br> Al2 $2 \mathrm{~ms},+/-0.5 \mathrm{msfor}$ analog input(s) <br> LI1...LI5 $2 \mathrm{~ms},+/-0.5$ msfor discrete input(s) <br> LI6 (if configured as logic input) $2 \mathrm{~ms},+/-0.5 \mathrm{msfor}$ discrete input(s) |
| Response time | <= 100 ms in STO (Safe Torque Off) <br> AO1 2 ms , tolerance +/- 0.5 msfor analog output(s) <br> R1A, R1B, R1C 7 ms , tolerance $+/-0.5$ msfor discrete output(s) <br> R2A, R2B 7 ms , tolerance $+/-0.5$ msfor discrete output(s) |
| Accuracy | Al1-/Al1+ +/- $0.6 \%$ for a temperature variation $60^{\circ} \mathrm{C}$ $\mathrm{Al} 2+/-0.6 \%$ for a temperature variation $60^{\circ} \mathrm{C}$ AO1 +/- $1 \%$ for a temperature variation $60^{\circ} \mathrm{C}$ |
| Linearity error | Al1-/Al1+, Al2 +/- $0.15 \%$ of maximum value AO1 +/- $0.2 \%$ |
| Analogue output number | 1 |
| Analogue output type | AO1 software-configurable current $0 . . .20 \mathrm{~mA}$, impedance 500 Ohm, resolution 10 bits AO1 software-configurable current $0 \ldots 20 \mathrm{~mA}$, impedance 500 Ohm, resolution 10 bits AO1 software-configurable voltage $0 \ldots 10 \mathrm{~V}$ DC, impedance 470 Ohm, resolution 10 bits <br> AO1 software-configurable logic output 10 V 20 mA |
| Discrete output number | 2 |
| Discrete output type | R1A, R1B, R1C configurable relay logic NO/NC, electrical durability 100000 cycles R2A, R2B configurable relay logic NO, electrical durability 100000 cycles |
| Minimum switching current | Configurable relay logic 3 mA at 24 V DC |
| Maximum switching current | R1, R2 on resistive load, 5 Aat $250 \mathrm{VAC}, \cos p h i=1$, <br> $\mathrm{R} 1, \mathrm{R} 2$ on resistive load, 5 Aat $30 \mathrm{~V} \mathrm{DC}, \cos$ phi $=1$, <br> $R 1, R 2$ on inductive load, 2 A at $250 \mathrm{VAC}, \cos$ phi $=0.4$, R1, R2 on inductive load, 2 Aat $30 \mathrm{~V} D, \cos p h i=0.4$, |
| Discrete input number | 7 |
| Discrete input type | LI6: switch-configurable 24 V DC with level 1 PLC, impedance: 3500 Ohm |

PWR: safety input 24 V DC, impedance: 1500 Ohm conforming to ISO 13849-1 level d
LI1...LI5: programmable 24 V DC with level 1 PLC, impedance: 3500 Ohm
LI6: switch-configurable PTC probe 0...6, impedance: 1500 Ohm

| Discrete input logic | LI1...LI5 positive logic (source), < 5 V (state 0 ), > 11 V (state 0 ) <br> LI1...LI5 negative logic (sink), > 16 V (state 0 ), < 10 V (state 0) <br> LI6 (if configured as logic input) positive logic (source), $<5 \mathrm{~V}$ (state 0), $>11 \mathrm{~V}$ (state 0 ) <br> LI6 (if configured as logic input) negative logic (sink), > 16 V (state 0 ), < 10 V (state 0) |
| :---: | :---: |
| Acceleration and deceleration ramps | Automatic adaptation of ramp if braking capacity exceeded, by using resistor Linear adjustable separately from 0.01 to 9000 s <br> S, U or customized |
| Braking to standstill | By DC injection |
| Protection type | Drive against exceeding limit speed <br> Drive against input phase loss <br> Drive break on the control circuit <br> Drive input phase breaks <br> Drive line supply overvoltage <br> Drive line supply undervoltage <br> Drive overcurrent between output phases and earth <br> Drive overheating protection <br> Drive overvoltages on the DC bus <br> Drive short-circuit between motor phases <br> Drive thermal protection <br> Motor motor phase break <br> Motor power removal <br> Motor thermal protection |
| Insulation resistance | $>1 \mathrm{mOhm}$ at 500 V DC for 1 minute to earth |
| Frequency resolution | Analog input $0.024 / 50 \mathrm{~Hz}$ Display unit 0.1 Hz |
| Communication port protocol | CANopen Modbus |
| Connector type | 1 RJ45for Modbus on front face 1 RJ45for Modbus on terminal Male SUB-D 9 on RJ45 for CANopen |
| Physical interface | 2-wire RS 485 for Modbus |
| Transmission frame | RTUfor Modbus |
| Transmission rate | 20 kbps, 50 kbps, 125 kbps, 250 kbps, 500 kbps, 1 Mbpsfor CANopen 4800 bps, 9600 bps, 19200 bps, 38.4 Kbpsfor Modbus on terminal 9600 bps, 19200 bpsfor Modbus on front face |
| Data format | 8 bits, 1 stop, even parityfor Modbus on front face <br> 8 bits, odd even or no configurable parityfor Modbus on terminal |
| Number of addresses | 1...247for Modbus <br> 1...127for CANopen |
| Method of access | Slavefor CANopen |
| Marking | CE |
| Operating position | Vertical +/-10 degree |
| Height | 1190 mm |
| Depth | 377 mm |
| Width | 595 mm |
| Product weight | 207 kg |
| Functionality | Full |
| Specific application | Other applications |
| Option card | CC-Link communication card <br> Controller inside programmable card <br> DeviceNet communication card <br> Ethernet/IP communication card <br> Fipio communication card <br> I/O extension card <br> Interbus-S communication card <br> Interface card for encoder <br> Modbus Plus communication card <br> Modbus TCP communication card <br> Modbus/Uni-Telway communication card <br> Overhead crane card <br> Profibus DP communication card <br> Profibus DP V1 communication card |

Okolina

| noise level | 77 dB conforming to 86/188/EEC |
| :---: | :---: |
| dielectric strength | 3535 V DC between earth and power terminals 5092 V DC between control and power terminals |
| electromagnetic compatibility | Conducted radio-frequency immunity test conforming to IEC 61000-4-6 level 3 Electrical fast transient/burst immunity test conforming to IEC 61000-4-4 level 4 Electrostatic discharge immunity test conforming to IEC 61000-4-2 level 3 Radiated radio-frequency electromagnetic field immunity test conforming to IEC 61000-4-3 level 3 <br> Voltage dips and interruptions immunity test conforming to IEC 61000-4-11 <br> $1.2 / 50 \mu \mathrm{~s}-8 / 20 \mu \mathrm{~s}$ surge immunity test conforming to IEC 61000-4-5 level 3 |
| standards | EN 55011 class A group 2 <br> EN 61800-3 environments 1 category C3 <br> EN 61800-3 environments 2 category C3 <br> EN/IEC 61800-3 <br> EN/IEC 61800-5-1 <br> IEC 60721-3-3 class 3C2 <br> UL Type 1 |
| product certifications | CSA <br> C-Tick GOST NOM 117 UL |
| pollution degree | 2 conforming to EN/IEC 61800-5-1 3 conforming to UL 840 |
| IP degree of protection | IP20 |
| vibration resistance | 1.5 mm peak to peak ( $\mathrm{f}=3 . . .10 \mathrm{~Hz}$ ) conforming to EN/IEC 60068-2-6 $0.6 \mathrm{gn}(\mathrm{f}=10 \ldots 200 \mathrm{~Hz}$ ) conforming to EN/IEC 60068-2-6 |
| shock resistance | 4 gnfor 11 ms conforming to EN/IEC 60068-2-27 |
| relative humidity | $5 . . .95 \%$ without condensation conforming to IEC 60068-2-3 <br> $5 . . .95 \%$ without dripping water conforming to IEC 60068-2-3 |
| ambient air temperature for operation | $-10 \ldots 5{ }^{\circ} \mathrm{C}$ without derating |
| ambient air temperature for storage | $-25 . . .70^{\circ} \mathrm{C}$ |
| operating altitude | <= 1000 m without derating <br> 1000... 3000 m with current derating $1 \%$ per 100 m |

Offer Sustainability

| Green Premium product | Green Premium product |
| :--- | :--- |
| Compliant - since 1002-Schneider Electric declaration <br> of conformity | Compliant - since 1002-Schneider Electric declaration of conformity |
| Reference not containing SVHC above the threshold | Reference not containing SVHC above the threshold |
| Available | Available |
| Need no specific recycling operations | Need no specific recycling operations |

Contractual warranty
Warranty period 18 months

## UL Type 1/IP 20 Drives

Dimensions with or without 1 Option Card (1)


Dimensions in mm

| a | b | c | G | H | K | K1 | K2 | Ø |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 595 | 1190 | 377 | 540 | 920 | 150 | 75 | 30 | 11.5 |

Dimensions in in.

| $\mathbf{a}$ | b | c | G | H | K | K1 | K2 | $\boldsymbol{\varnothing}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 23.43 | 46.85 | 14.84 | 21.26 | 36.22 | 5.90 | 2.95 | 1.18 | 0.45 |

(1) Option cards: I/O extension cards, communication cards or "Controller Inside" programmable card.

Dimensions with 2 Option Cards (1)


Dimensions in mm

| $\mathbf{a}$ | $\mathbf{c 1}$ | $\mathbf{G}$ | $\mathbf{H}$ | $\mathbf{K}$ | $\mathbf{K 1}$ | $\mathbf{K 2}$ | $\boldsymbol{\varnothing}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 595 | 392 | 540 | 920 | 150 | 75 | 30 | 11.5 |

Dimensions in in.

| $\mathbf{a}$ | $\mathbf{c 1}$ | $\mathbf{G}$ | $\mathbf{H}$ | $\mathbf{K}$ | $\mathbf{K 1}$ | K2 | $\boldsymbol{\varnothing}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 23.43 | 15.43 | 21.26 | 36.22 | 5.90 | 2.95 | 1.18 | 0.45 |

(1) Option cards: I/O extension cards, communication cards or "Controller Inside" programmable card.

## Drive with Braking Unit VW3A7101

Dimensions with or without 1 Option Card (1)


| b in $\mathbf{~ m m}$ | c in mm | b in in. | c in in. |
| :--- | :--- | :--- | :--- |
| 1190 | 377 | 46.85 | 14.84 |

(1) Option cards: I/O extension cards, communication cards or "Controller Inside" programmable card. Dimensions with 2 Option Cards (1)


| $\mathbf{c} 1$ in $\mathbf{~ m m}$ | $\mathbf{c} 1$ in in. |
| :--- | :--- |
| 392 | 15.43 |

(1) Option cards: I/O extension cards, communication cards or "Controller Inside" programmable card.

## Mounting Recommendations

## Clearance



These drives can be mounted side by side, observing the following mounting recommendations:
$\underset{\mathrm{in}}{\mathrm{mm}}$


## Specific Recommendations for Mounting the Drive in an Enclosure

## Ventilation

To ensure proper air circulation in the drive:
। Fit ventilation grilles.
1 Ensure that there is sufficient ventilation. If there is not, install a forced ventilation unit with a filter. The openings and/or fans must provide a flow rate at least equal to that of the drive fans (refer to the product characteristics).


। Use special filters with IP 54 protection.
। Remove the blanking cover from the top of the drive.
Dust and Damp Proof Metal Enclosure (IP 54)
The drive must be mounted in a dust and damp proof enclosure in certain environmental conditions: dust, corrosive gases, high humidity with risk of condensation and dripping water, splashing liquid, etc.

This enables the drive to be used in an enclosure where the maximum internal temperature reaches $50^{\circ} \mathrm{C}$.

Wiring Diagram Conforming to Standards EN 954-1 Category 1, IEC/EN 61508 Capacity SIL1, in Stopping Category 0 According to IEC/EN 60204-1

Three-Phase Power Supply with Upstream Breaking via Contactor


A1 ATV71 drive
KM1 Contactor
L1 DC choke
Q1 Circuit-breaker
Q2 GV2 L rated at twice the nominal primary current of T1
Q3 GB2CB05
S1, XB4 B or XB5 A pushbuttons
S2
T1 100 VA transformer 220 V secondary
(1) Line choke (three-phase); mandatory for ATV71HC11Y...HC63Y drives (except when a special transformer is used (12-pulse)).
(2) For ATV71HC40N4 drives combined with a 400 kW motor, ATV71HC50N4 and ATV71HC40Y...HC63Y, refer to the power terminal connections diagram.
(3) Fault relay contacts. Used for remote signalling of the drive status.
(4) Connection of the common for the logic inputs depends on the positioning of the SW1 switch. The above diagram shows the internal power supply switched to the "source" position (for other connection types, refer to the user guide).
(5) There is no PO terminal on ATV71HC11Y...HC63Y drives.
(6) Optional DC choke for ATV71H•••M3, ATV71HD11M3X..HD45M3X, ATV71•075N4... $\cdot$ D75N4 and ATV71P•••N4Z drives. Connected in place of the strap between the PO and PA/+ terminals. For ATV71HD55M3X, HD75M3X, ATV71HD90N4...HC50N4 drives, the choke is supplied with the drive; the customer is responsible for connecting it.
(7) Software-configurable current ( $0 \ldots 20 \mathrm{~mA}$ ) or voltage ( $0 \ldots 10 \mathrm{~V}$ ) analog input.
(8) Reference potentiometer.

All terminals are located at the bottom of the drive. Fit interference suppressors on all inductive circuits near the drive or connected on the same circuit, such as relays, contactors, solenoid valves, fluorescent lighting, etc.

## Wiring Diagram Conforming to Standards EN 954-1 Category 1, IEC/EN 61508 Capacity SIL1, in Stopping Category 0 According to IEC/EN 60204-1

## Three-Phase Power Supply with Downstream Breaking via Switch Disconnector



A1 ATV71 drive
L1 DC choke
Q1 Circuit-breaker
Q2 Switch disconnector (Vario)
(1) Line choke (three-phase), mandatory for ATV71HC11Y...HC63Y drives (except when a special transformer is used (12-pulse)).
(2) For ATV71HC40N4 drives combined with a 400 kW motor, ATV71HC50N4 and ATV71HC40Y...HC63Y, refer to the power terminal connections diagram.
(3) Fault relay contacts. Used for remote signalling of the drive status.
(4) Connection of the common for the logic inputs depends on the positioning of the SW1 switch. The above diagram shows the internal power supply switched to the "source" position (for other connection types, refer to the user guide).
(5) There is no PO terminal on ATV71HC11Y...HC63Y drives.
(6) Optional DC choke for ATV71H•••M3, ATV71HD11M3X...HD45M3X, ATV71•075N4...•D75N4 and ATV71P•••N4Z drives. Connected in place of the strap between the PO and PA/+ terminals. For ATV71HD55M3X, HD75M3X, ATV71HD90N4...HC50N4 drives, the choke is supplied with the drive; the customer is responsible for connecting it.
(7) Software-configurable current ( $0 \ldots 20 \mathrm{~mA}$ ) or voltage ( $0 \ldots 10 \mathrm{~V}$ ) analog input.
(8) Reference potentiometer.

All terminals are located at the bottom of the drive. Fit interference suppressors on all inductive circuits near the drive or connected on the same circuit, such as relays, contactors, solenoid valves, fluorescent lighting, etc.

Wiring Diagram Conforming to Standards EN 954-1 Category 3, IEC/EN 61508 Capacity SIL2, in Stopping Category 0 According to IEC/EN 60204-1


A1 ATV71 drive
A2 Preventa XPS AC safety module for monitoring emergency stops and switches. One safety module can manage the "Power Removal" function for several drives on the same machine. In this case, each drive must connect its PWR terminal to its +24 V via the safety contacts on the XPS AC module. These contacts are independent for each drive.
F1 Fuse
L1 DC choke
Q1 Circuit-breaker
S1 Emergency stop button with 2 contacts
S2 XB4 B or XB5 A pushbutton
(1) Power supply: 24 Vdc or Vac, 48 Vac, 115 Vac, 230 Vac.
(2) S2: resets XPS AC module on power-up or after an emergency stop. ESC can be used to set external starting conditions.
(3) Requests freewheel stopping of the movement and activates the "Power Removal" safety function.
(4) Line choke (three-phase), mandatory for and ATV71HC11Y...HC63Y drives (except when a special transformer is used (12-pulse)).
(5) The logic output can be used to signal that the machine is in a safe stop state.
(6) For ATV71HC40N4 drives combined with a 400 kW motor, ATV71HC50N4 and ATV71HC40Y...HC63Y, refer to the power terminal connections diagram.
(7) Fault relay contacts. Used for remote signalling of the drive status.
(8) Connection of the common for the logic inputs depends on the positioning of the SW1 switch. The above diagram shows the internal power supply switched to the "source" position (for other connection types, refer to the user guide).
(9) Standardized coaxial cable, type RG174/U according to MIL-C17 or KX3B according to NF C 93-550, external diameter $2.54 \mathrm{~mm} / 0.09$ in., maximum length $15 \mathrm{~m} / 49.21 \mathrm{ft}$. The cable shielding must be earthed.
(10) There is no PO terminal on ATV71HC11Y...HC63Y drives.
(11) Optional DC choke for ATV71H•••M3, ATV71HD11M3X..HD45M3X, ATV71•075N4... ${ }^{\text {D }} 75 \mathrm{~N} 4$ and ATV71P•••N4Z drives. Connected in place of the strap between the PO and PA/+ terminals. For ATV71HD55M3X, HD75M3X, ATV71HD90N4...HC50N4 drives, the choke is supplied with the drive; the customer is responsible for connecting it.
(12) Software-configurable current ( $0 \ldots 20 \mathrm{~mA}$ ) or voltage ( $0 \ldots 10 \mathrm{~V}$ ) analog input.
(13) Reference potentiometer.

All terminals are located at the bottom of the drive. Fit interference suppressors on all inductive circuits near the drive or connected on the same circuit, such as relays, contactors, solenoid valves, fluorescent lighting, etc.

Wiring Diagram Conforming to Standards EN 954-1 Category 3, IEC/EN 61508 Capacity SIL2, in Stopping Category 1 According to IEC/EN 60204-1


A1 ATV71 drive
A2 Preventa XPS ATE safety module for monitoring emergency stops and switches. One safety module can manage the "Power
(5) Removal" safety function for several drives on the same machine. In this case the time delay must be adjusted on the drive controlling the motor that requires the longest stopping time. In addition, each drive must connect its PWR terminal to its +24 V via the safety contacts on the XPS ATE module. These contacts are independent for each drive.
F1 Fuse
L1 DC choke
Q1 Circuit-breaker
S1 Emergency stop button with 2 N/C contacts
S2 Run button
(1) Power supply: 24 Vdc or Vac, $115 \mathrm{Vac}, 230 \mathrm{Vac}$.
(2) Requests controlled stopping of the movement and activates the "Power Removal" safety function.
(3) Line choke (three-phase), mandatory for ATV71HC11Y...HC63Y drives (except when a special transformer is used (12-pulse)).
(4) S2: resets XPS ATE module on power-up or after an emergency stop. ESC can be used to set external starting conditions.
(5) For stopping times requiring more than 30 seconds in category 1, use a Preventa XPS AV safety module which can provide a maximum time delay of 300 seconds.
(6) The logic output can be used to signal that the machine is in a safe state.
(7) For ATV71HC40N4 drives combined with a 400 kW motor, ATV71HC50N4 and ATV71HC40Y...HC63Y, refer to the power terminal connections diagram.
(8) Fault relay contacts. Used for remote signalling of the drive status.
(9) Connection of the common for the logic inputs depends on the positioning of the SW1 switch. The above diagram shows the internal power supply switched to the "source" position (for other connection types, refer to the user guide).
(10) Standardized coaxial cable, type RG174/U according to MIL-C17 or KX3B according to NF C 93-550, external diameter $2.54 \mathrm{~mm} / 0.09 \mathrm{in}$., maximum length $15 \mathrm{~m} / 49.21 \mathrm{ft}$. The cable shielding must be earthed.
(11) Logic inputs LI1 and LI2 must be assigned to the direction of rotation: LI1 in the forward direction and LI2 in the reverse direction.
(12) There is no PO terminal on ATV71HC11Y...HC63Y drives.
(13) Optional DC choke for ATV71H•••M3, ATV71HD11M3X...HD45M3X, ATV71•075N4...•D75N4 and ATV71P..•N4Z drives. Connected in place of the strap between the PO and PA/+ terminals. For ATV71HD55M3X, HD75M3X, ATV71HD90N4...HC50N4 drives, the choke is supplied with the drive; the customer is responsible for connecting it.
(14) Software-configurable current ( $0 \ldots 20 \mathrm{~mA}$ ) or voltage ( $0 \ldots 10 \mathrm{~V}$ ) analog input.
(15) Reference potentiometer.

All terminals are located at the bottom of the drive. Fit interference suppressors on all inductive circuits near the drive or connected on the same circuit, such as relays, contactors, solenoid valves, fluorescent lighting, etc.

## Derating Curves

The derating curves for the drive nominal current (In) depend on the temperature and the switching frequency. For intermediate temperatures (e.g. $55^{\circ} \mathrm{C}$ ), interpolate between 2 curves.
Drive combined with a 220 kW motor


X Switching frequency
Drive combined with a 250 kW motor Ifin


X Switching frequency

